Syzygies of determinantal thickenings and gl(m|n) representations

Amy Huang (Texas A&M University)

30-Jul-2024, 08:30-09:30 (17 months ago)

Abstract: The coordinate ring $S = \mathbb{C}[x_{i,j}]$ of space of $m \times n$ matrices carries an action of the group $\mathrm{GL}_m \times \mathrm{GL}_n$ via row and column operations on the matrix entries. If we consider any $\mathrm{GL}_m \times \mathrm{GL}_n$-invariant ideal $I$ in $S$, the syzygy modules $\mathrm{Tor}_i(I,\mathbb{C})$ will carry a natural action of $\mathrm{GL}_m \times \mathrm{GL}_n$. Via BGG correspondence, they also carry an action of $\bigwedge^{\bullet} (\mathbb{C}^m \otimes \mathbb{C}^n)$. It is a result by Raicu and Weyman that we can combine these actions together and make them modules over the general linear Lie superalgebra $\mathfrak{gl}(m|n)$. We will explain how this works and how it enables us to compute all Betti numbers of any $\mathrm{GL}_m \times \mathrm{GL}_n$-invariant ideal $I$.

algebraic geometryrepresentation theory

Audience: researchers in the topic


Algebra and Geometry Seminar @ HKUST

Series comments: Algebra and Geometry seminar at the Hong Kong University of Science and Technology (HKUST).

If the talk is online/mixed mode, Zoom info is available on researchseminars.org in the talk details. But if you would also like to be added to the mailing list to get notifications for upcoming talks, please email agseminar@ust.hk.

Organizers: Quoc Ho*, Qingyuan Jiang*
*contact for this listing

Export talk to